

Blue Carbon and Ecosystem Services: small-scale fisheries in mangroves and seagrasses Busuanga Island, Philippines

T. E. Angela L. Quiros, Kenji Sudo and Masahiro Nakaoka Akkeshi Marine Station, Hokkaido University

APBON

September 30, 2021

Akkeshi Marine Station FSC, Hokkaido University

AngelaLQuiros@fsc.hokudai.ac.jp; nakaoka@fsc.hokudai.ac.jp Twitter: @SurfNSeagrass 1

COASTAL BLUE CARBON

An investment in wetland restoration supports many important benefits, including *carbon capture*, improved water quality, critical marine habitat, and increased resiliency through storm and flood protection. **Ecosystem Services**

Copyright © 2020, Land Trust Alliance. All rights reserved.

Small-scale fisheries: 200 million people, 90% developing world

Allison & Ellis, 2001; Bene, Hersoug, Allison, 2010

Questions

- Can we assess differences in coastal communities' vulnerability to the loss of blue carbon habitat?
- How prevalent is the provisioning service of blue carbon habitat for coastal communities?
- Can we use **socio-ecological** data to improve management of blue carbon ecosystems?

Deltares, 2014

Short, et al. 2011

Philippines context

- 78% of provinces and 56% of cities and municipalities along the coastline, making up 60% of population
- Fish gives 70% of total animal protein
- Philippines has 16 seagrass species and 42 mangrove species

Figure 2 Output of Philippine Capture Fisheries by Subsector, 2001–2010 (million tons)

Busuanga

• 14 barangays

- High mangrove, seagrass, coral cover, but low plan biomass of target reef fish
- Dugong, sea turtle
- 87% of people in poverty
- High number of recreation, tourism areas
- <u>Problems</u>: coral harvesting, conflicting knowledge on MPAs, need for food livelihood & access to tourism

Coron

- 23 barangays
 (30% urban barangays)
- High mangrove, seagrass, coral cover
- Tourism leading livelihood source
- <u>Problems</u>: illegal mangrove cutting

Source: Busuanga and Coron ECAN Resource Management Plans, 2017-2022

Data sources using multiple methods

Indo-Pacific Seagrass Network

Field collections between February 2019 - October 2020

Some communities specialize in seagrass fisheries, others in mangrove fisheries, or both

Municipality	Barangay	Mangrove landings	Mean CPUE (kg/hr) (SD)	Seagrass Iandings	Mean CPUE (kg/hr) (SD)	
Busuanga	Concencion	n=19	1 58 (1 11)	n=117	1 37 (1 76)	sg 💵
Busuanga			1.50 (1.11)		1.07 (1.70)	sc 🗤
	New Busuanga	n=0		n=32	0.83 (0.55)	JU 100
	Quezon	n=17	6.12 (3.70)	n=4	0.86 (0.32)	MG 퐀
	Salvacion	n=8	0.31 (0.21)	n=60	1.73 (1.62)	sg 💵
Coron	Borac	n=92	2.02 (1.21)	n=0		MG 롰
	Brgy. 5	n=10	0.78 (0.38)	n=49	0.93 (0.99)	sg 🚻
	Decalachao	n=19	1.87 (1.91)	n=9	0.64 (0.15)	MG 롰
	San Jose	n=18	1.63 (1.11)	n=50	1.02 (1.31)	sg 💓
	Turda	n=15	0.97 (1.35)	n=21	1.17 (0.91)	sg/mg 💵 롰
Totals		n=198	2.24 (2.39)	n=342	1.23 (1.42)	

Spatial analyses

- Limited analysis to 10 barangays within Busuanga Island
- <u>Exposure</u>: Urbanism Weighted average distance, human population, with Coron Town weighted heaviest (population 19,000) and Salvacion town (population 4,000)
- Coron had a weight of 0.84 (a/(a + b))

Salvacion had a weight of 0.16 (b/(a + b))

Spatial analyses

- <u>Sensitivity</u>: Coastline covered by seagrass and mangroves Remotely sensed data ground-truthed in the field or by expert opinion
- Mangrove Vegetation Index (MVI): Baloloy et al, 2020 Using a 100-m buffer distance (ArcGIS), calculated the length of mangrove forest by total length of each barangay coastline
- Landsat 8 linear spectral unmixing method for seagrass Overlaid validated seagrass map on UNEP coral reef base layer (reef flat) to show the proportion of reef flat covered by seagrass in each barangay

12

Spatial analyses

- <u>Adaptive capacity</u>: Habitat patchiness
- Continuous grid of 500-m cells in the mangrove & seagrass layers
- Focal statistics function (ArcGIS) to calculate the contiguous area of 3 cells with seagrass or mangroves, separately
- Focal analysis score divided by number of 500-m cells within that barangay for a connectivity ratio
- Focal analysis ratio <25% small, fragmented habitats 25-60% medium patchiness >60% contiguous

https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-focal-statistics-works.htm

- Adaptive capacity: Adjacent habitat
- Same grid of 500-m cells in the mangrove & seagrass layers
- Connectivity score between 0 and 2
 Score = 0 : 1 habitat (seagrass, mangrove or coral)

Score = 1: 2 habitats (seagrass/mangrove, seagrass/coral or coral/ mangrove)

Score = 2: 3 habitats present

Spatial analyses

Divide total cells in barangay grid by cumulative connectivity score Low connectivity score <1; Medium score between 1 to 1.5;

High score > 1.5

https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-focal-statistics-works.htm

25

Seagrass

species,

Basiss Basiss Map created by Ayin Tamondong with superimposed data from the BlueCARES Ecology Group

Exposure Indicators for fisheries systems

Mamauag et al, 2013; Jacinto et al, 2015; Licuanan et al, 2015

*additional variable created for this study

	Criteria	Low, Medium, High
Seagrass ecosystem	Perception to changes in seagrass cover	Low exposure: widespread, dense Medium exposure: patchy, decreasing High exposure: sparse
Mangrove ecosystem	Perception to changes in mangrove cover	Low exposure: widespread, dense Medium exposure: patchy, decreasing High exposure: sparse
Socio- economic	Urban gradient*	Low exposure: Weighted distance > 40 km Medium exposure: Weighted distance 20-40 km High exposure: Weighted distance < 20 km
	Tourism gradient*	Low exposure: low Medium exposure: medium High exposure: high

What makes up a healthy seagrass bed?

Methods

 Seagrass habitat (Seagrass Watch, Indo-Pacific Seagrass Network (IPSN))

Sensitivity Indicator	Low sensitivity (1-2 pts)	Medium sensitivity (3-4 pts)	High sensitivity (5 pts)
Seagrass % cover	> 51%	21-50%	<20%
Seagrass species number	> 5 species seagrass	2 – 4 species	Monospecific seagrass bed

Ecological surveys

Sensitivity Indicators for fisheries systems

Mamauag et al, 2013; Jacinto et al, 2015; Licuanan et al, 2015

*additional variable created for this study

	Criteria	Low, Medium, High
Ecosystem sg	Seagrass % cover	Low sensitivity: seagrass % cover > 51% Medium sensitivity: seagrass % cover 21-50% High sensitivity: seagrass % cover <20%
	Coastal area covered by seagrasses	Low sensitivity: > ½ reef flat Medium sensitivity: 1/8 to ½ reef flat High sensitivity: < ½ reef flat
	Seagrass species number	Low sensitivity: > 5 species Medium sensitivity: 2-4 species High sensitivity: monoculture
MG 롰	Coastal area covered by mangroves	Low sensitivity: > ½ coastline Medium sensitivity: 1/8 to ½ coastline High sensitivity: < ½ coastline
	Kind of mangrove forest	Low sensitivity: riverine-basin-fringing Medium sensitivity: riverine-fringing High sensitivity: scrub-fringing

What makes up a less sensitive catch?

Methods

 Fishery variables (Quiros et al, 2018, Indo-Pacific Seagrass Network (IPSN))

Sensitivity Indicator	Low sensitivity (1-2 pts)	Medium sensitivity (3-4 pts)	High sensitivity (5 pts)
Dominant catch	pelagics	mix of pelagic, demersal	demersal, nearshore
Seagrass CPUE (catch per unit effort)	> 8 kg / fisher/ day	3 kg / fisher/ day	< 3 kg / fisher/ day

34

Landing surveys

36

Sensitivity Indicators for fisheries systems

Mamauag et al, 2013; Jacinto et al, 2015; Licuanan et al, 2015

*additional variable created for this study

	Criteria	Low, Medium, High
Fisheries	Dominant catch composition	Low sensitivity: pelagics Medium sensitivity: mix of pelagic, demersal High sensitivity: demersal, nearshore
	Catch rate	Low sensitivity: > 8 kg / fisher/ day Medium sensitivity: 3 kg / fisher/ day High sensitivity: < 3 kg / fisher/ day
Socio- economic	Population density	Low sensitivity: < 200 /km2 Medium sensitivity: 200-400 /km2 High sensitivity: > 500 / km2
	Fisheries ecosystem dependency	Low sensitivity: < 25% full time fishers Medium sensitivity: 25-50% full time fishers High sensitivity: > 50% full time fishers
	Tourism income	Low sensitivity: <7 % tourism workers Medium sensitivity: 7-15% tourism workers High sensitivity: >15% tourism workers

How reliant are households on seagrass resources?

Socio-economic

- Non-fishing employment
- Household reliance on seagrass

Household surveys

Quiros et al, 2018

Sensitivity Indicator	Low sensitivity (1-2 pts)	Medium sensitivity (3-4 pts)	High sensitivity (5 pts)
Human population density	< 200 /km2	200-400 /km2	> 500 / km2
Fisheries income	< 25% full time fishers	25-50% full time fishers	> 50% full time fishers

Adaptive Capacity Indicators for fisheries systems

Mamauag et al, 2013; Jacinto et al, 2015; Licuanan et al, 2015

*additional variable created for this study

		Criteria	Low, Medium, High
	Ecosystem sg	Seagrass species composition	Low adaptive capacity: Enhalus or no seagrass Med adaptive capacity: Enhalus, Thalassia, Cymodocea, Halodule High adaptive capacity: Halophila, Halodule
S		Seagrass habitat extent	Low adaptive capacity: Small, fragmented Med adaptive capacity: Patchy, but large area High adaptive capacity: Large, contiguous area
3;		Presence of adjacent habitat (seagrass or mangroves or corals)	Low adaptive capacity: Absent Med adaptive capacity: Presence of 1 adjacent habitat in good condition High adaptive capacity: Presence of 2 adjacent habitats
	MG 롰	Mangrove habitat extent	Low adaptive capacity: Small, fragmented Med adaptive capacity: Patchy, but large area High adaptive capacity: Large, contiguous area

Adaptive Capacity Indicators for fisheries systems

Mamauag et al, 2013; Jacinto et al, 2015; Licuanan et al, 2015

		Criteria	Low, Medium, High
	Socio- economic	Fishers with other sources of income	Low adaptive capacity: < 40% fishers Med adaptive capacity: 40-60% fishers High adaptive capacity: > 60% fishers
es		Households with Salaried income	Low adaptive capacity: < 10% salaried Med adaptive capacity: 10-15% salaried High adaptive capacity: > 15% salaried
	Fisheries	Alternative livelihoods to fishing	Low adaptive capacity: Only fishing Med adaptive capacity: 1-2 other livelihoods High adaptive capacity: > 3 other livelihoods
013; ; 15		Fishing experience	Low adaptive capacity: > 20 years Med adaptive capacity: 5-10 or 10-20 years High adaptive capacity: < 5 years

*additional variable created for this study

41

Adaptive Capacity Indicators for fisheries systems

Mamauag et al, 2013; Jacinto et al, 2015; Licuanan et al, 2015

*additional variable created for this study

42

Criteria

Access to

People's

Education

knowledge,

information

Organizations

Governance

Low, Medium, High

Low adaptive capacity: No NGOs, 1 past NGO

Med adaptive capacity: 1 current NGOs

High adaptive capacity: 2 current NGOs

Med adaptive capacity: 2-5 POs High adaptive capacity: > 5 Pos

schooling (high school)

than 10 years schooling

years schooling

Low adaptive capacity: No presence, 1 PO

Low adaptive capacity: > 60% less than 10 years

Med adaptive capacity: 20-40% or 40-60% less

High adaptive capacity: < 10 % with less than 10

Simple ranking of vulnerability scores

Categories	Number of variables	Minimum score	Maximum score	LOW score	MEDIUM score	HIGH score	Scores were used
Blue Carbon fisheries	3	3	15	3-7	8-11	12-15	to rank variables using a point class interval
Socio- economic	4	4	20	4-9	10-15	16-20	
Seagrass ecosystem	2	2	10	2-4	5-7	8-10	

Mamauag et al, 2013

Conclusions

- Vulnerability criteria can help address multiple SDGs at once (poverty, hunger), while tackling natural resource management issues
- Policy prescriptions for Busuanga Island:
- 1) Improve access to education
- 2) Increase information and organization opportunities
- 3) Equitable fisheries management

4) Establish protected areas and limit tourism development in sensitive habitat

