15th APBON Web Seminar (Hybrid; in Fukuoka) 2-2-2023

The calling song of *Meimuna opalifera*; difference of the functions between the former and the latter part of the song

Takeru KODAMA

Laboratory of Ecological Science, Graduate School of Systems Life Sciences, Kyushu University

Keywords: Acoustic communication, Behavior, Cicadidae

Introduction

Acoustic communication in which only males vocalize

[TOPIC OF MY STUDY]

Anurans Orthopterans Cicadas Wells 2007 Miyatake 2011

Cicadas

• Attracting females & inducing pair formation for mating

[Specific structure: **Tymbal**]

• Indicating body size

• Forming chorus group etc...

Right tensor LEasticligament Right operculum Right operculum Chitinous V Pringle 1954

Muscle contraction **Membrane** vibration Resonance in cavity

Big sound Römer 2018

Extremely complex calling song

Alexander et al

Introduction

Meimuna opalifera

The calling song is extremely complex The song pattern changes in the middle

why the song structures are so complex

Introduction

Acoustic characteristics may contain various biological information

A part of spectrogram of the calling song of M. opalifera

Two parts of the song may contain different information or functions

Methods

Hypothesis: these two parts have different functions

If the functions differ by the parts...

[Playback experiment] ... Experiment by playback of sound stimuli from a loudspeaker

Males of *M. opalifera* vocalize **"response call (RC)"** to conspecific calling song

Hayashi & Saisho 2015, Ishimaru & Aihara 2022

A spectrogram and an oscillogram of an RC → Y-axis: Frequency (kHz), X-axis: Time (s)

Counting the number of RCs as responses to the playbacks

Comparing the number of RCs in each type of sound stimuli

Methods

Recording: songs of <u>5</u> individuals **Editing**: <u>5 types</u> of playback sounds

1. Intact song (IS)

Site	Ito Campus, Kyushu Univ. (33°35'41.8"N, 130°13'08.2"E)
Date	August 17 th –30 th , 2019

Methods

Playbacking: Under laboratory condition

Schematic diagram of playback

Five types of sound stimuli were used in randomized order

Results

RCs were vocalized only to the stimuli made of the calling songs

NS and WN were excluded from the subsequent statistical analysis

Results

RCs were frequent for stimuli which contained the former part

Number of responses IS, FPS > LPS

More frequently to the stimuli which contained the former part

The function as a signal to the males exists in the former part of the calling song

What is the function of the response calls?

Hypotheses regarding RCs ... Disturbance to the calling song Variant of chorus Hayashi & Saisho 2015

[Previous study] Ishimaru and Aihara (2022)

Examination of whether the RCs of *M. opalifera* mask the conspecific calling song

It could not be said that RCs masked effectively, and new possibilities were proposed

- (i) Competition hypothesis(ii) Sneaking hypothesis(iii) Cooperation hypothesis

The function of RC is still an open question

It should be revealed for the further understanding of the functions of the calling song

Discussion

Comparing the peak frequencies of two parts using FFT

These were not significantly different

(Wilcoxon rank sum test, p = 0.2753)

The temporal characteristics might be critical for evoking other male responses

Conclusion

- *M. opalifera* vocalizes the response calls only to the conspecific calling song, not to other sound
- Synthetic sound stimuli which contains the former part of the calling song induce the response calls
 - This is the first study which showed that the two parts of the calling song of *M. opalifera* had different functions

These results will be the first step to reveal the importance of the complexity of the calling song of *M. opalifera*

- The function of the response calls is still an open question
- The temporal characteristics might be critical rather than the frequency

Acknowledgements

I will thank to the people and the institutions below that supported my study

- Prof. Haruki Tatsuta (Kyushu Univ.)
- Dr. Eiiti Kasuya (Osaka Metropolitan Univ.)
- Prof. Ikuo Matsuo (Tohoku Gakuin Univ.)
- Members of Lab. of Ecological Science, Kyushu Univ.
- Kyushu Univ. SPRING program (JPMJSP2136)
- Education and Research Center for Mathematical and Data Science (Kyushu Univ.)

Thank you for your kind attention